Maternal Immunization – implementation challenges, Canadian solutions

Dr. Manish Sadarangani

Director, Vaccine Evaluation Center, BC Children's Hospital Research Institute Assistant Professor, Division of Infectious Diseases, Department of Pediatrics, UBC

5 December, 2018

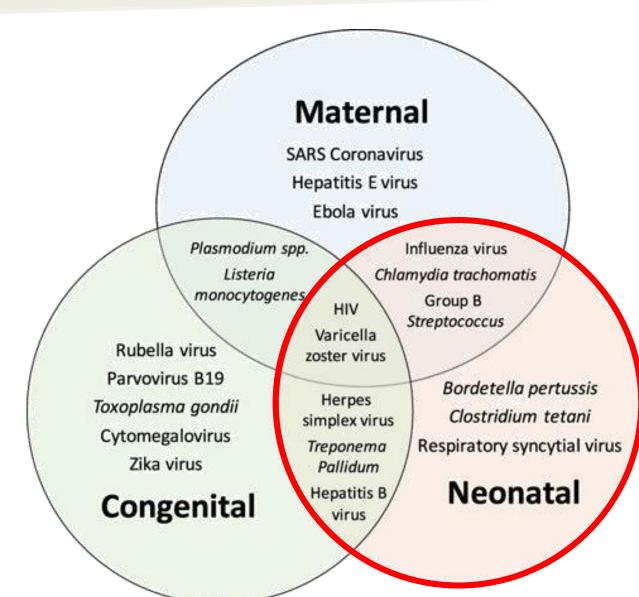
THE UNIVERSITY OF BRITISH COLUMBIA

Faculty of Medicine

Disclosure of Relationship	Company/Organization(s)	If you think this might be perceived as biasing your presentation or a conflict of interest, identify how you will address this in your presentation.
I have ownership interest or other financial interest in the company (i.e. stocks, stock options or other ownership interest, excluding diversified mutual funds)		
I am a member of an Advisory Board or similar committee		
I am a member of a Speaker's Bureau		
I am involved in research grants and funding from industry	Pfizer, Merck, GSK, VBI Vaccines	No vaccine trade names
I am currently participating in or have participated in a clinical trial within the past two years		
I have received honorarium, consulting fees, salary, royalty, grant-in-aid or other monetary support received from or expected from the company		
I have ownership in a patent for a product referred to in the presentation or marketed by the company		
I am involved in the design of clinical studies concerning the use of products manufactured by the company		
My spouse or close family member(s) have commercial affiliation(s)		

Objectives

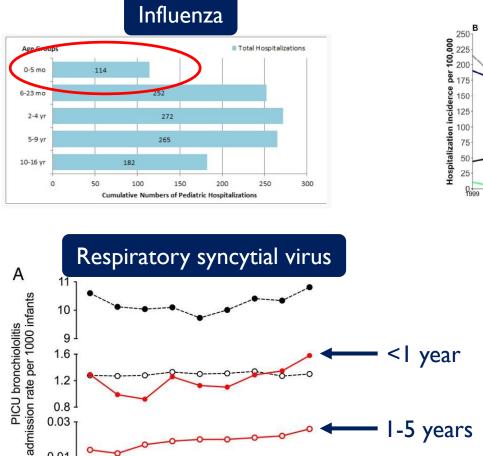
- Know which vaccines are/will be available for immunization in pregnancy
- Be familiar with existing data for safety and effectiveness of immunization in pregnancy
- Understand the current gaps in safety and/or effectiveness data, and how these create implementation challenges
- Appreciate issues around acceptability and feasibility of maternal immunization programs for patients and healthcare professionals


Outline

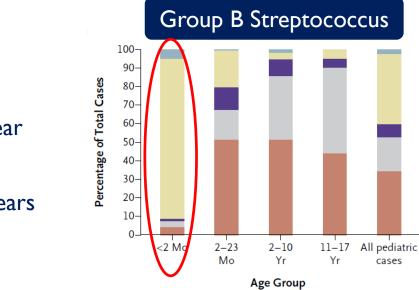
Overview of immunization in pregnancy

- Influenza
- Pertussis
- Acceptability and feasibility
- Current gaps and implementation challenges

The scope of maternal immunization



Pathogen Category	Goal of Vaccination	Optimal Timing of Vaccination		
Maternal	Prevent maternal infection/disease	PRIOR to or DURING pregnancy		
Congenital	Prevent fetal infection/disease	PRIOR to pregnancy		
Neonatal	Prevent neonatal infection/disease	DURING pregnancy		


Vermillion & Klein. npj Vaccines 2018

The challenge of protecting infants

Age Groups -0-1 months Pertussis 2-3 months -4-5 months -6-11 months 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 Year

Green et al. Arch Dis Child 2016; Thigpen et al. NEJM 2011 PHAC FluWatch Report Abu Raya et al. JPIDS 2018 in press

2004 2005 2006 2007 2008 2009 2010 2011 2012

0.01

cases

Every pathogen is different

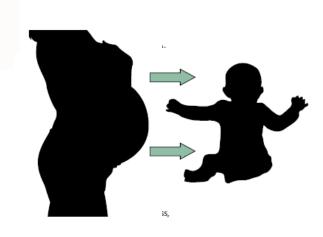
	Pertussis	Influenza	Group B streptococcus	Respiratory syncytial virus
Maternal disease risk	+	+++	++	+
Infant mortality	++	+	+++	++
Infant disease frequency	+ (cyclic*)	++	+	+++
Disease seasonality	\checkmark	\checkmark	×	✓
Microbial diversity	+	++	++	+
Licensed vaccine available	✓	\checkmark	×	×
Maternal booster response expected†	✓	Partial‡	Not assumed	✓
Passive protection of infant	\checkmark	\checkmark	\checkmark	✓
Maternal to cord antibody ratio	1.1-1.9	0.7-1.0	0.7-0.8	1.0
Antibody half-life (days)	36-40	40-50	30-44	36-79
Infant vaccination	✓	≥6 months	×	(✓)§
Correlate of protection	×	Partial¶	×	×
Functional immunoassay	×	\checkmark	I	✓
Competing control option	×	×	√ **	√ ††

+=low. ++= medium. +++=high. *Increased disease incidence usually occurs every 3–4 years. †Via previous vaccination or infection will lead to partial protection due to virus evolution. \$Monoclonal antibody administered to high-risk infants during respiratory syncytial virus season. ¶Correlates of protection based on haemagglutinin inhibition assay or microneutralisation titres have not been validated in young infants and are not based on maternal immunisation. ||Bacterial killing in an opsonophagocytic assay has been suggested as a possible correlate of protection. **Intrapartum antibiotic prophylaxis has reduced the incidence of early onset group B streptococcus neonatal sepsis. ††Monoclonal antibodies administered to high risk infants during respiratory syncytial virus season reduces rates of hospital admission.

Marchant, Sadarangani et al. Lancet Inf Dis 2017

Table: Targets of maternal immunisation

Goals of immunization in pregnancy


- Temporary protection of the young infant against
 - Severe illness and death

• Via

- Passive transplacental transfer of maternal IgG
- Transfer of breast milk immune factors
- Reduction of carriage/disease in the mother
- ?Induction of immune responses in the fetus

Until

- High risk period has elapsed (e.g. Group B Streptococcus) and/or
- Infant immunization provides protection (e.g. pertussis)
- Without adverse effect on infant immunity

Heath et al. Lancet Inf Dis 2017

Which vaccines?

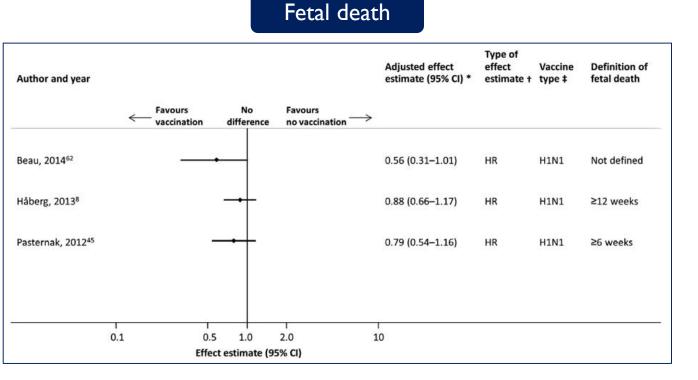
- Specifically recommended during pregnancy
 - Influenza
 - Tetanus-diphtheria-acellular pertussis (Tdap)
- Consider if indicated
 - Hepatitis B
 - Hepatitis A (post-exposure prophylaxis, travel)
 - Meningococcal conjugate (post-exposure prophylaxis, travel)
 - Pneumoccoccal conjugate or polysaccharide

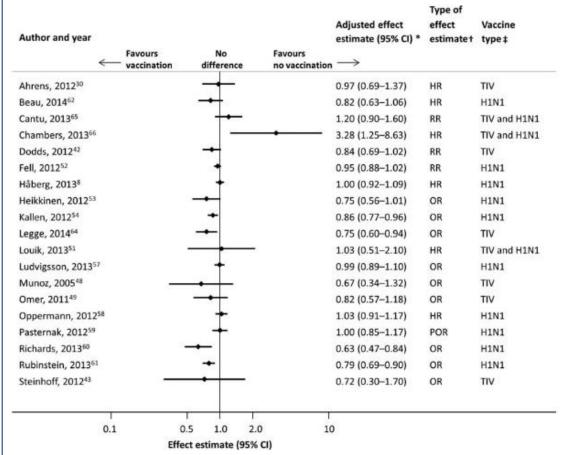
Influenza is worse in pregnancy

- 152 studies

Pregnancy as a risk factor for severe outcomes from influenza virus infection: A systematic review and meta-analysis of observational studies

- Individual level data on >300,000 subjects
- Dominik Mertz^{a,b,c,d}, Johanna Geraci^e, Judi Winkup^b, Bradford D. Gessner^f, Justin R. Ortiz^g, Mark Loeb^{b,c,d,a}
- 1 hospitalization in pregnant women with influenza


	pregna	ncy	no preg	nancy		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% C	M-H, Random, 95% Cl
46.3.1 Community							
Buda 2010	138	514	5933	120030	10.2%	7.06 [5.80, 8.59]	+
Echavarria 2010	1	5	77	270	5.0%	0.63 [0.07, 5.70]	
Gilca 2011	10	20	157	367	8.8%	1.34 [0.54, 3.29]	
Gonzales-Candelas 2011	46	102	653	1300	9.9%	0.81 [0.54, 1.22]	
Harris 2010	9	14	22	79	7.9%	4.66 [1.41, 15.47]	
Jamieson 2009	11	34	218	5435	9.2%	11.45 [5.51, 23.78]	_
Kwan-Gett 2009	4	11	66	554	7.7%	4.23 [1.20, 14.82]	
Lenzi 2012a	162	352	884	2175	10.2%	1.25 [0.99, 1.56]	-
Orellano 2010	87	124	4171	6742	10.0%	1.45 [0.98, 2.14]	
Poeppl 2011	8	15	335	525	8.4%	0.65 [0.23, 1.82]	
Poggensee 2010	25	160	527	16957		Not estimable	
Sevencan 2011	12	18	11	59	7.9%	8.73 [2.68, 28.37]	_
Vasoo 2010	3	4	45	95	4.8%	3.33 [0.33, 33.20]	
Subtotal (95% CI)		1213		137631	100.0%	2.44 [1.22, 4.87]	\bullet
Total events	491		12572				
Heterogeneity: $Tau^2 = 1.21$; Test for overall effect: $Z = 2$			= 11 (P ·	< 0.00001); I² = 95%	5	
Total (95% CI)		1213		137631	100.0%	2.44 [1.22, 4.87]	◆
Total events	491		12572				
Heterogeneity: Tau ² = 1.21; Test for overall effect: Z = 2 Test for subgroup difference	2.52 (P = 0	.01)		< 0.00001); I² = 95%	5	0.02 0.1 1 10 50 no pregnancy pregnancy


(CrossMarl

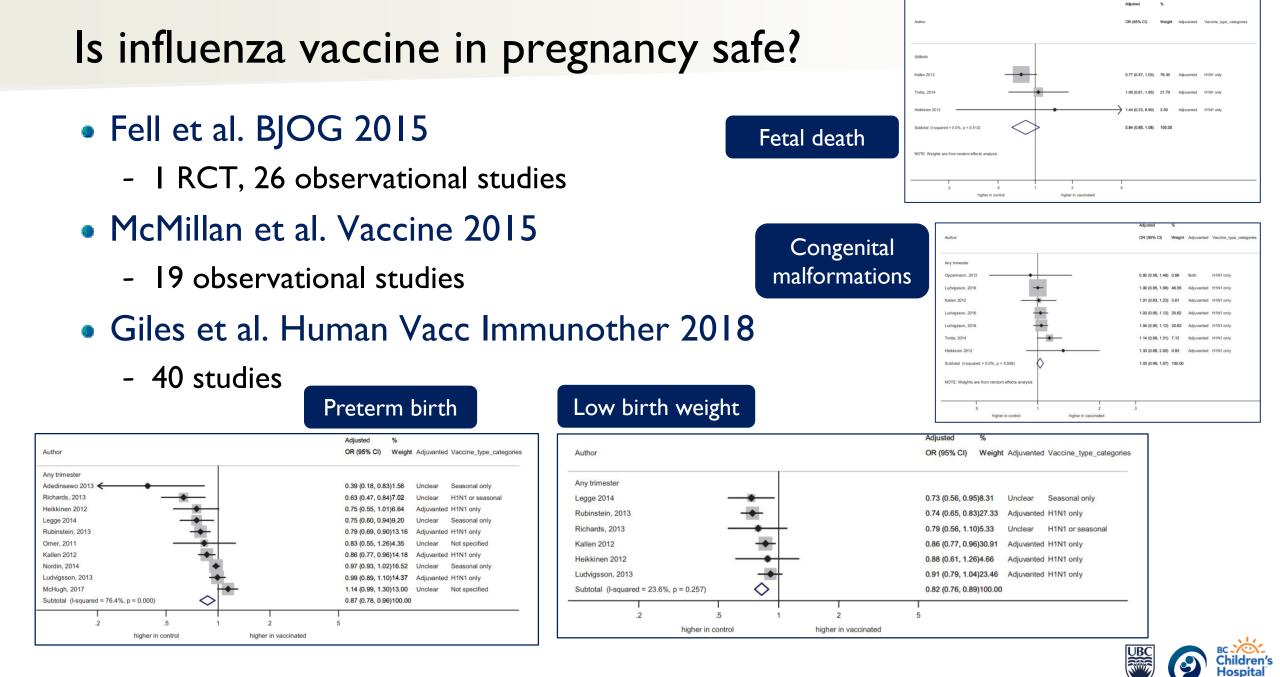
Is influenza vaccine in pregnancy safe?

- Fell et al. BJOG 2015
 - I RCT, 26 observational studies

Preterm birth

Is influenza vaccine in pregnancy safe?

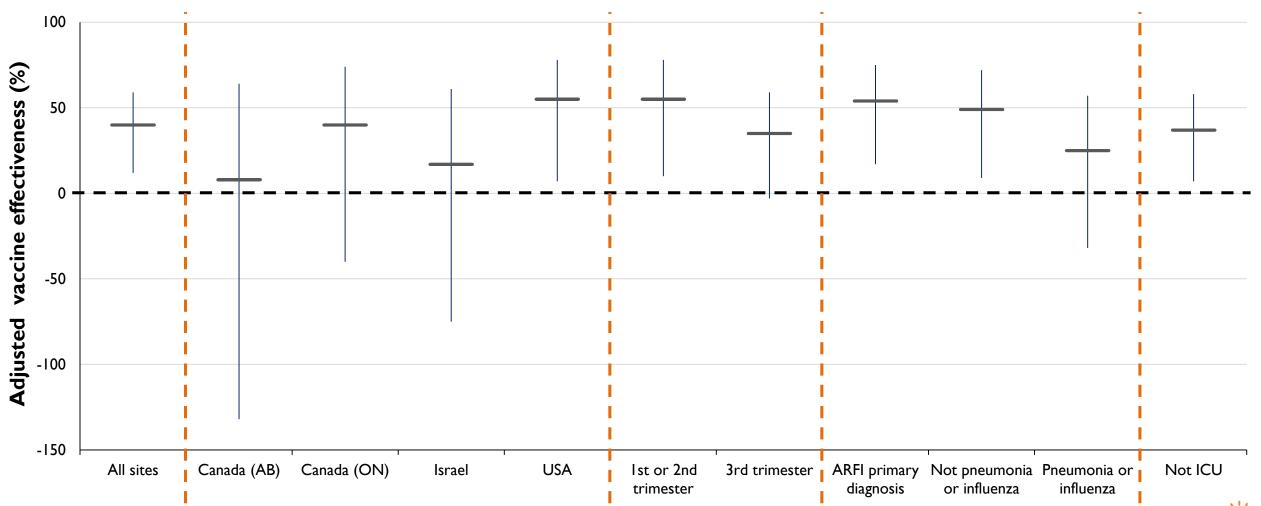
- Fell et al. BJOG 2015
 - I RCT, 26 observational studies
- McMillan et al. Vaccine 2015
 - 19 observational studies


Congenital malformations

Study	Design	Composition	Adjuvant	Туре	Vaccine group	Control group	Effect estimate subtotals (95% Cl)
All malformation							
Opperman et al. [10]	Prospective	Mono H1N1	Non-adj or AS03	Split-virion	321	1198	OR 0.92 (0.58 to 1.46)
Heikkinen et al. [12]	Mixed	Mono H1N1	MF-59	Subunit	2295	2213	OR 1.33 (0.88 to 2.00)
Mackenzie et al. [27]	Prospective	Mono H1N1	AS03	Split-virion	97	13	OR 1.60 (0.08 to 30.70)
Rubinstein et al. [21]	Cross section	Mono H1N1	MF-59	Subunit	7293	23195	OR 0.81 (0.55 to 1.19) 光
Deinard [9]	Prospective	Mono Hsw1N1	Unspecified	Split or whole	176	517	OR 0.58 (0.32 to 1.06)
Munoz et al. [25]	Retrospective	TIV	Unspecified	Unspecified	225	825	OR 0.12 (0.01 to 1.95)
Major malformation							
Opperman et al. [10]	Prospective	Mono H1N1	Non-adj or ASO3	Split-virion	321	1198	OR 1.11 (0.51 to 2.42)
Launay et al. [24]	Prospective	Mono H1N1	Non-adjuvant	Split-virion	320	557	OR 2.34 (0.52 to 10.51)
Sheffield et al. [19]	Retrospective	TIV	Unspecified	Unspecified	8425	76919	OR 1.01 (0.84 to 1.22) 94

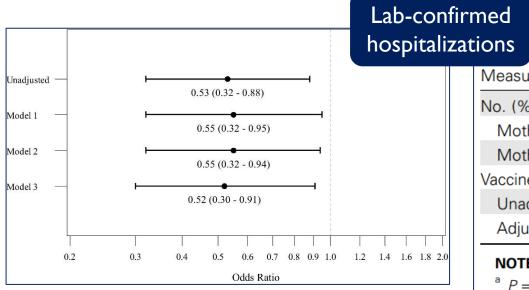
Fetal death

			Vaccinated	Unvaccinated		Odds Ratio		Odds	Ratio	
Study or Subgroup	log[Odds Ratio]	SE	Total	Total	Weight	IV, Fixed, 95% CI		IV, Fixed,	, 95% CI	
Chambers 2013	-1.4725	1.6037	1032	191		0.23 [0.01, 5.32]	+	+		
Lin 2012	-1.0791	1.636	202	206		0.34 [0.01, 8.39]	_	+		
Launay 2012	-0.5466	1.1568	320	557		0.58 [0.06, 5.59]				
Sheffield 2012	-0.5108	0.1943	8864	76919		0.60 [0.41, 0.88]		+		
Fell 2012	-0.4166	0.1736	23340	32230		0.66 [0.47, 0.93]		+		
Rubinstein 2013	-0.3425	0.2215	7293	23195		0.71 [0.46, 1.10]		-+-	-	
Kallen 2012	-0.2107	0.1617	18844	84484		0.81 [0.59, 1.11]		+		
Cantu 2013	0.0953	0.4448	979	2010		1.10 [0.46, 2.63]				
Heikkinen 2012	0.3646	0.9359	2295	2213		1.44 [0.23, 9.02]			+	
Deinard 1981	1.0818	1.4269	176	517		2.95 [0.18, 48.35]			+	
							0.01	0.1 1 Favours vaccinated	10 Favours unvaccinate	100



Is influenza vaccine in pregnancy safe?

- Fell et al. BJOG 2015
 - I RCT, 26 observational studies
- McMillan et al. Vaccine 2015
 - 19 observational studies
- Giles et al. Human Vacc Immunother 2018
 - 40 studies
- Fell et al. Vaccine 2015
 - Mixed evidence suggesting reduced risk of adverse birth outcomes
 - Mainly retrospective observational studies
 - No evidence of harm


Does influenza vaccine work in pregnancy?

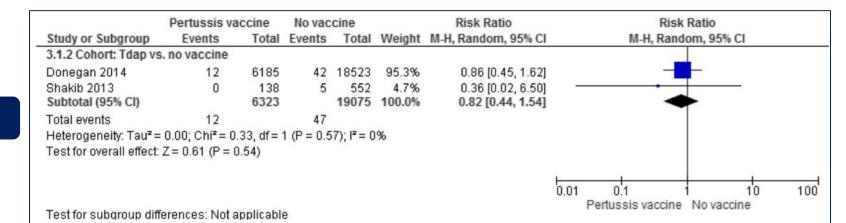
Thompson et al. Clin Inf Dis 2018

What about the infants?

Poehlling et al. Am J Obst Gyn 2011

Ons Measure	Subjects aged <6 months	Subjects aged ≥6 months
No. (%) of case infants; no. (%) of control infants		
Mother was vaccinated	2 (2.2); 31 (19.9)	1 (4.6); 2 (5.6)
Mother was not vaccinated	89 (97.8); 125 (80.1)	21 (95.5); 34 (94.4)
Vaccine effectiveness (95% CI), %		
Unadjusted	90.7 (59.9–97.8) ^a	-41.4 (-2257.3 to 91.5)
Adjusted ^c	91.5 (61.7–98.1) ^a	

Benowitz et al. Clin Inf Dis 2010


Pertussis in pregnancy - safety

• Furuta et al. BMC Preg Childbirth 2017

- 15 studies

Preterm b

	Pertussis va	iccine	Cont	rol		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 9
1.1.1 RCT: Tdap vs. p	lacebo/TT						
Hoang 2016	0	52	1	51	32.0%	0.33 [0.01, 7.85]	+ -
Munoz 2014	3	33	1	15	68.0%	1.36 [0.15, 12.05]	
Subtotal (95% CI)		85		66	100.0%	0.86 [0.14, 5.21]	
Fotal events	3		2				
Heterogeneity: Tau ² :	= 0.00; Chi ² = 0	.53, df =	1 (P = 0.4)	47); I ² = 0	1%		
est for overall effect	: Z = 0.16 (P = 0	0.87)					
1.1.2 Cohort: Tdap v	e no vaccino						
(harbanda 2014	1527	26229	7544	97265	99.5%	0.75 [0.71, 0.79]	
Shakib 2013	1527	134	38	505	0.5%	0.79 [0.38, 1.66]	
Subtotal (95% CI)	0	26363	50	97770		0.75 [0.71, 0.79]	•
Fotal events	1535		7582				
Heterogeneity: Tau ² :		02 df=		38)· I ² = 0	196		
Test for overall effect							
reetter ererun eneer	- 10.01 (0.00001	/				
							0.05 0.2 1 Pertussis vaccine Con

Stillbirth

Pertussis immunization in pregnancy works

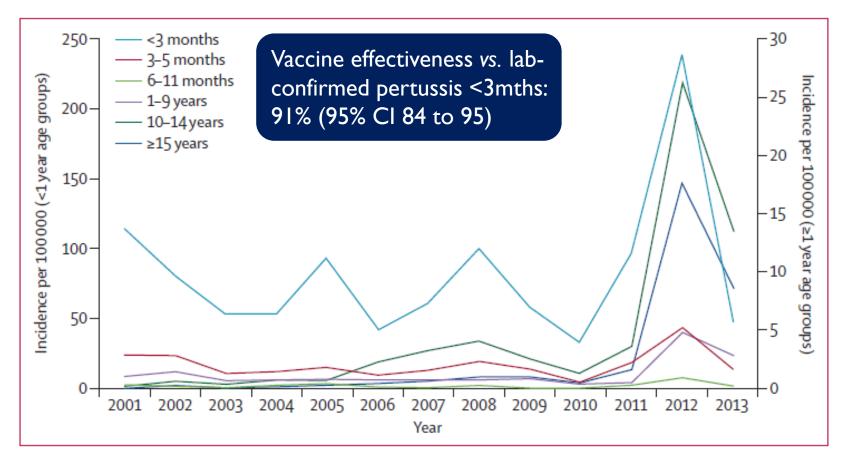


Figure 2: Annual incidence of laboratory-confirmed cases of pertussis by age group Figure shows incidence from 2001 to 2013 in England only. Amirthalingam et al. Lancet (2014)

Pertussis immunization in pregnancy works

Table 3. Maternal Pertussis Vaccine Effectiveness Estimates, by Timing of Vaccination

Timing of Vaccination	Cases Vaccinated/Total	Average Matched Coverage	VE (95% CI)
28 d before delivery	31/229	64.1%	91% (88–94)
7-27 d before delivery	4/213	16.2%	91% (80–96)
0–6 d before or 1–13 d after delivery	3/179	2.7%	43% (-35 to 76)

Abbreviations: CI, confidence interval; VE, vaccine effectiveness.

Table 4. Maternal Pertussis Vaccine Effectiveness, by Vaccine Product

Vaccine	Cases Vaccinated/ Total	Average Matched Coverage	VE (95% CI)	VE Reducing Coverage by Relative 20% (95% CI)
dT5aP-IPV	20/172	63.1%	93% (89–95)	87% (80–92)
dT3aP-IPV	15/71	69.3%	88% (79–93)	78% (62–88)

Abbreviations: CI, confidence interval; dT3aP, diphtheria-tetanus-3-component acellular pertussis vaccine; dT5aP, diphtheria-tetanus-5-component acellular pertussis vaccine; IPV, inactivated polio vaccine; VE, vaccine effectiveness.

Amirthalingam et al. Clin Inf Dis (2016)

Pertussis immunization in pregnancy works

	12-mo Follow-up (Total Pertussis Cases = 103)						
	No. of Pertussis Case Person-	•	VE, % (95% CI)	Р			
	No Maternal Tdap	Maternal Tdap					
Maternal Tdap during pregnancy (8+ days before birth) ^a							
0 DTaP doses (birth until day 7 after the first DTaPdose)	31 (177.2)	2 (14.8)	87.9 (41.4 to 97.5)	.009			
Protected by 1 DTaP dose ^b	23 (170.3)	5 (43.2)	81.4 (42.5 to 94.0)	.004			
Protected by 2 DTaP doses ^b	12 (88.5)	8 (72.8)	6.4 (-165.1 to 66.9)	.901			
Protected by 3 DTaP doses ^b	14 (48.7)	7 (32.1)	65.9 (4.5 to 87.8)	.041			
Maternal Tdap before pregnancy	89 (89.4)	14 (42.4)	55.6 (20.1 to 75.4)	.007			
Maternal Tdap after pregnancy	80 (72.1)	23 (106.2)	24.1 (—28.5 to 55.1)	.305			

Baxter et al. Pediatrics (2018)

What about the infants?

_	Infants of vaccinated mothers In		Infants of unvaccinated mo	thers			
-	GMC	n	GMC	п		RoGM	95% CI
Study							
Munoz et al; JAMA 2014	64.9	26	96.6	14		0.67	0.38-1.18
Ladhani et al; CID 2014	28.8	129	43.2	203		0.67	0.57-0.77
Hoang et al; Vaccine 2016	70	35	67	35		1.04	0.77-1.40
Maertens et al; Vaccine 2016	29	49	54	21		0.54	0.39-0.72
Halperin et al; CID 2018	56.9	118	77.3	131		0.74	0.60-0.89
Summary (Random effects model, I	P=0.0005)				•	0.72	0.59-0.86
Summary (Fixed effect model, P<0.	0001)					0.70	0.63-0.77
Chi-Square=10.75, df=4 (P=0.029); I-Squ	are=62.8%						
A) Meta-analysis of infants' anti-PT	InG levels nost nriman	vaccination			. 1	1	1
Ay meta-analysis of infants and-Pi	igo ieveis post primary	vaccination		0	0.5 1	1.5	2 2.5

Lower in infants of vaccinated mothers Higher in infants of vaccinated mothers

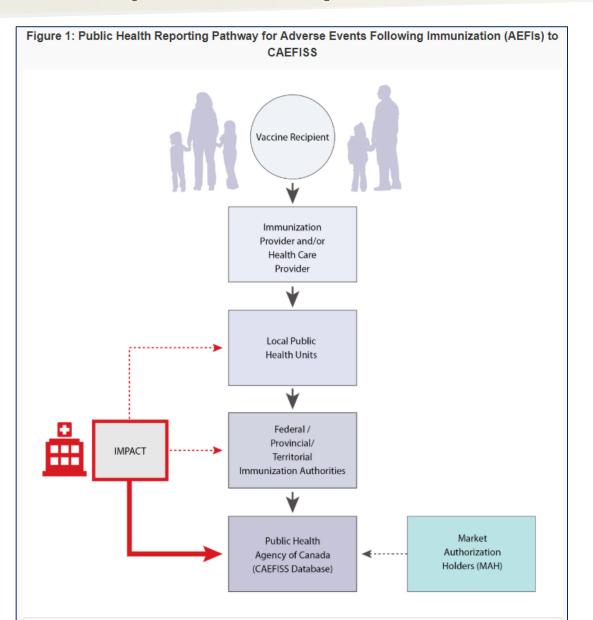
	Infants of vaccinated mothe	rs	Infants of unvaccinated mothers					
	GMC	n	GMC	n		RoGM	95% CI	
Study								
Munoz et al; JAMA 2014	80.1	27	83.9	12		0.95	0.51-1.76	
Maertens et al; Vaccine 2016	36.29	45	56.6	23		0.64	0.46-0.89	
Maertens et al; CID 2016	129	30	133.7	37		0.96	0.67-1.38	
Halperin et al; CID 2018	55.6	115	70.2	124		0.79	0.65-0.95	
Summary (Random effects mo	del, P=0.0025)				+ i	0.79	0.68-0.92	
Summary (Fixed effect model,	P=0.0019)				+ :	0.79	0.68-0.91	
Chi-Square=3.07, df=3 (P=0.3807);	I-Square=2.3%							
B) Meta-analysis of infants' anti-PT IgG levels post booster vaccination								1
D) Meta-analysis of infants' an	ti-PT IgG levels post booster vac	cinatio	n	0	0.5 1 1.5	2 2.5	3.5 4 4	.5

Lower in infants of vaccinated mothers Higher in infants of vaccinated mothers

Abu Raya et al. Unpublished data

Current Canadian (NACI) recommendations

Influenza


- All pregnant women
- Any stage of pregnancy
- Inactivated vaccine
- If not given, as early as possible post-partum, preferably before hospital discharge

• Pertussis (Tdap)

- All pregnant women
- Every pregnancy
- Ideally 27-32 weeks gestation, consider 13-26 weeks gestation, any time until delivery

Gaps in safety data

Complication	~Baseline rate	I 0% increase	~Study sample size
Small for gestational age	9%	10%	33,000
Preterm births	8%	9%	38,000
Low birth weight (<2.5 kg)	6%	6.6%	52,000
Congenital malformations	4%	4.4%	80,000
Stillbirths	١%	1.1%	326,000

Statistics Canada Public Health Agency of Canada

Components of safety surveillance

- Global AEFI surveillance for pregnant women and infants
 - 47 countries, including 19 high-income countries (HICs)

	Total		H	HICs	
	n	(%)	n	(%)	
National maternal immunization policy	30	(64%)	12	(63%)	
Active AEFI surveillance - maternal	9	(19%)	2	(%)	
Active AEFI surveillance – infant	7	(15%)	3	(16%)	
Passive AEFI surveillance	40	(85%)	17	(89%)	
Passive: ascertains pregnancy status	17	(36%)	5	(26%)	
Registry for unintentional immunization	4	(9%)	2	(%)	

Components of safety surveillance

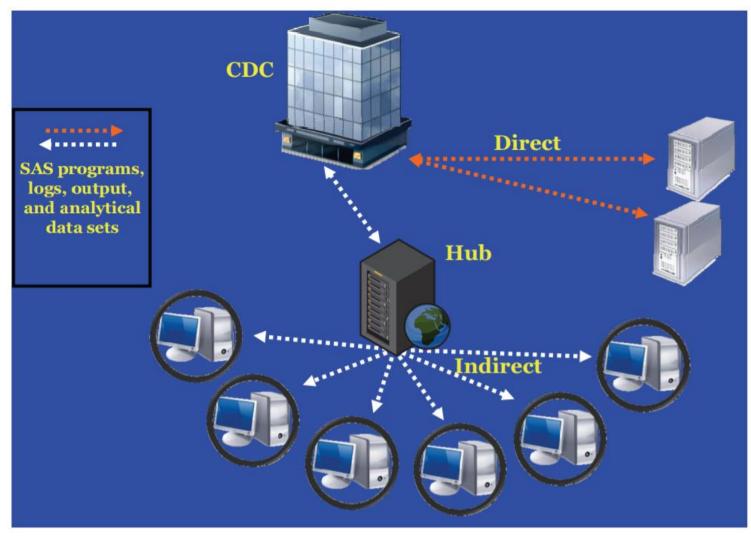
- Global AEFI surveillance for pregnant women and infants
 - 47 countries, including 19 high-income countries (HICs)

	Т	otal	F	llCs	Canada?	
	n	(%)	n	(%)		
National maternal immunization policy	30	(64%)	12	(63%)	No	
Active AEFI surveillance - maternal	9	(19%)	2	(%)	No	
Active AEFI surveillance – infant	7	(15%)	3	(16%)	No	
Passive AEFI surveillance	40	(85%)	17	(89%)	Yes	
Passive: ascertains pregnancy status	17	(36%)	5	(26%)	No	
Registry for unintentional immunization	4	(9%)	2	(%)	No	

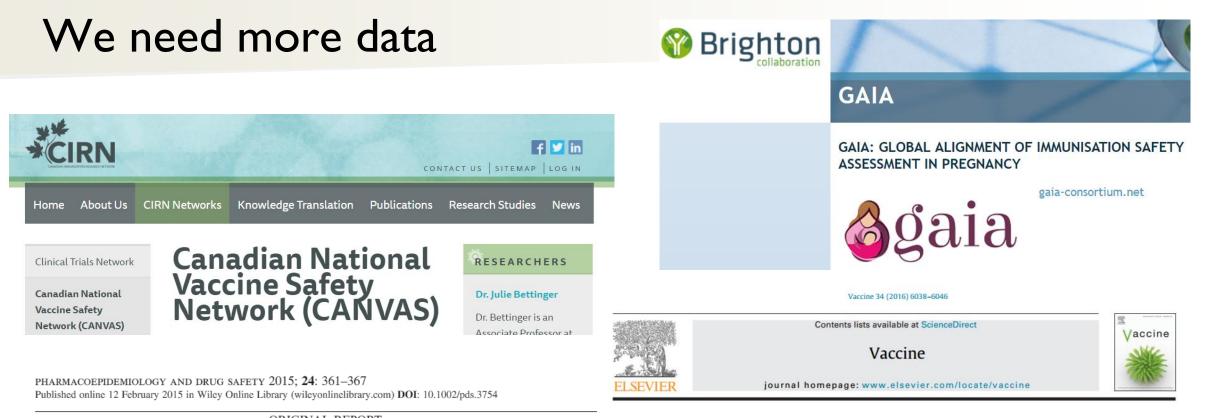
Cassidy et al. Human Vacc Immunother 2016

Components of safety surveillance

- Global AEFI surveillance for pregnant women and infants
 - 47 countries, including 19 high-income countries (HICs)


	Т	otal	otal H		Canada?	Australia	USA	UK	Sudan	
	n	(%)	n	(%)	Callaua;	Australia	UJA	UK	Mexico	
National maternal immunization policy	30	(64%)	12	(63%)	No	Yes	Yes	Yes	Yes	
Active AEFI surveillance - maternal	9	(19%)	2	(%)	No	Yes	Yes	Yes	Yes	
Active AEFI surveillance – infant	7	(15%)	3	(16%)	No	No	Yes	Yes	Yes	
Passive AEFI surveillance	40	(85%)	17	(89%)	Yes	Yes	Yes	Yes	Yes	
Passive: ascertains pregnancy status	17	(36%)	5	(26%)	No	No	No	Yes	Yes	
Registry for unintentional immunization	4	(9%)	2	(%)	No	No	Yes	Yes	No	

Cassidy et al. Human Vacc Immunother 2016



The US model?

- Vaccine Safety Datalink
 - 69 publications, 1995-2018

ORIGINAL REPORT

Adverse event following immunization surveillance systems for pregnant women and their infants: a systematic review

Christine Cassidy¹, Noni E. MacDonald^{2,3}, Audrey Steenbeek^{1,3} and Karina A. Top^{2,3,4}*

¹School of Nursing, Faculty of Health Professions, Dalhousie University, Halifax, Nova Scotia, Canada
²Department of Paediatrics, Dalhousie University, Halifax, Nova Scotia, Canada

³Canadian Center for Vaccinology, IWK Health Centre, Halifax, Nova Scotia, Canada

⁴Department of Community Health and Epidemiology, Dalhousie University, Halifax, Nova Scotia, Canada

Neonatal infections: Case definition and guidelines for data collection, analysis, and presentation of immunisation safety data^{\star}

CrossMark

Stefania Vergnano^a, Jim Buttery^b, Ben Cailes^a, Ravichandran Chandrasekaran^c, Elena Chiappini^d, Ebiere Clark^e, Clare Cutland^f, Solange Dourado de Andrade^g, Alejandra Esteves-Jaramillo^h, Javier Ruiz Guinazuⁱ, Chrissie Jones^a, Beate Kampmann^{j,k}, Jay King^h, Sonali Kochharⁱ, Noni Macdonald^m, Alexandra Mangiliⁿ, Reinaldo de Menezes Martins^o, César Velasco Muñoz^p, Michael Padula^q, Flor M. Muñoz^r, James Oleske^s, Melvin Sanicas^t, Elizabeth Schlaudecker^u, Hans Spiegel^v, Maja Subelj^w, Lakshmi Sukumaran^x, Beckie N. Tagbo^y, <u>Karina A. Top^m</u>, Dat Tran^z, Paul T. Heath^{a,*}, The Brighton Collaboration Neonatal Infections Working Group¹

Estimating vaccine effectiveness

- Characteristics of vaccine recipient
 - Link pregnancy & immunization status
 - Link mother & infant
- High quality individual level vaccine data
 - Timing, product
- Environment & exposure to pathogen
- Measure outcome of interest
 - Lab confirmation, hospitalization, etc
- Number of methodologic considerations
 - Case-control studies, Test negative design, Cohort studies, Screening method
- Infant's immune response to vaccination should be measured

Contents lists available at ScienceDirect

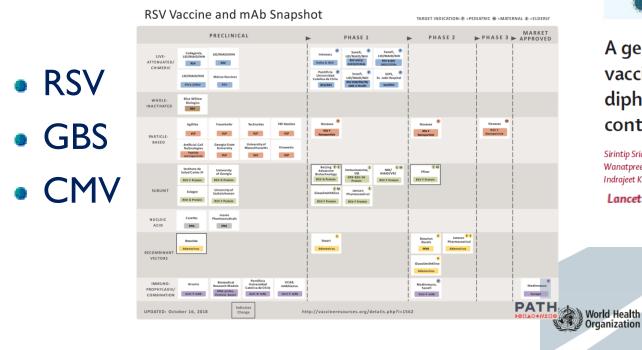
Vaccine 36 (2018) 7286–729

Vaccine

journal homepage: www.elsevier.com/locate/vaccine

Review

A framework for research on vaccine effectiveness


Natasha S. Crowcroft ^{a,b,*}, Nicola P. Klein^c

What's in the pipeline?

Universal influenza

Monovalent/novel antigen pertussis

National Institute of Allergy and Infectious Diseases

Universal Influenza A universal flu vaccine should Vaccine Initiative

- Be at least 75% effective
- Protect against group I and II influenza A viruses
- Have durable protection that lasts at least 1 year
- Be suitable for all age groups

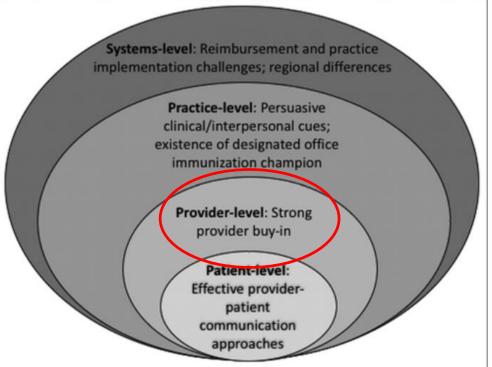
A genetically inactivated two-component acellular pertussis vaccine, alone or combined with tetanus and reduced-dose diphtheria vaccines, in adolescents: a phase 2/3, randomised controlled non-inferiority trial

Sirintip Sricharoenchai*, Chukiat Sirivichayakul*, Kulkanya Chokephaibulkit, Punnee Pitisuttithum, Jittima Dhitavat, Arom Pitisuthitham, Wanatpreeya Phongsamart, Kobporn Boonnak, Keswadee Lapphra, Yupa Sabmee, Orasri Wittawatmongkol, Pailinrut Chinwangso, Indrajeet Kumar Poredi, Jean Petre, Pham Hong Thai, Simonetta Viviani

Lancet Infect Dis 2018; 18:58-67

Clinical and Vaccine AMERICAN SOCIETY FOR MICROBIOLOGY

Progress toward Development of a Vaccine against Congenital **Cytomegalovirus Infection**


Mark R. Schleiss,^a Sallie R. Permar,^b Stanley A. Plotkin^a

clintrials.gov: 343 trials

Who should deliver maternal immunization programs?

- Public health clinics
- Pharmacists
 - Immunization expertise
 - Additional visits
- Midwives
- Obstetricians
 - Regular contact with pregnant women
 - Philosophy to avoid all unnecessary medications
 - Multiple barriers to administering vaccines
- Family physicians?

Frew et al. Hum Vac Imm 2018

Knowledge, attitudes, perceptions

Qualitative Meta-Analysis: General Article

"Nature Does Things Well, Why Should We Interfere?": Vaccine Hesitancy Among Mothers

Qualitative Health Research 2016, Vol. 26(3) 411–425 © The Author(s) 2015 Reprints and permissions: sagepub.com/journals/Permissions.nav DOI: 10.1177/1049732315573207 qhr.sagepub.com

Eve Dubé¹, Maryline Vivion², Chantal Sauvageau², Arnaud Gagneur³, Raymonde Gagnon⁴, and Maryse Guay⁵

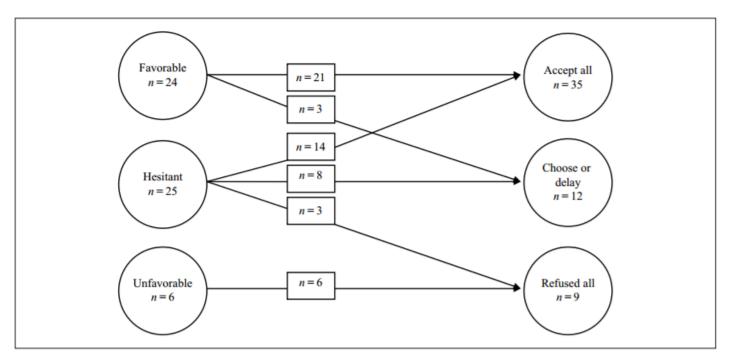


Figure 1. Mothers' attitudes at first interview and mothers' decision at second interview.

Knowledge, attitudes, perceptions

Qualitative Meta-Analysis: General Article

"Nature Does Things Well, Why Should We Interfere?": Vaccine Hesitancy Among Mothers Qualitative Health Research 2016, Vol. 26(3) 411–425 © The Author(s) 2015 Reprints and permissions: sagepub.com/journals/Permissions.nav DOI: 10.1177/1049732315573207 qhr.sagepub.com

Eve Dubé¹, Maryline Vivion², Chantal Sauvageau², Arnaud Gagneur³, Raymonde Gagnon⁴, and Maryse Guay⁵

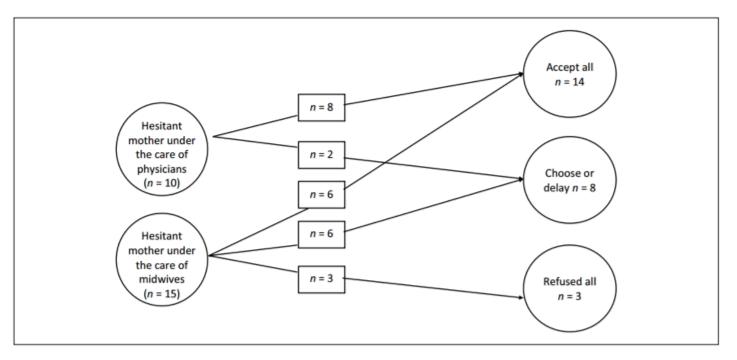


Figure 2. Vaccine-hesitant mothers' decisions and type of care.

Knowledge, attitudes, perceptions

Qualitative Meta-Analysis: General Article

"Nature Does Things Well, Why Should We Interfere?": Vaccine Hesitancy Among Mothers

Qualitative Health Research 2016, Vol. 26(3) 411–425 © The Author(s) 2015 Reprints and permissions: agepub.com/journalsPermissions.nav DOI: 10.1177/1049732315573207 qhr.sagepub.com

Eve Dubé¹, Maryline Vivion², Chantal Sauvageau², Arnaud Gagneur³, Raymonde Gagnon⁴, and Maryse Guay⁵

To accept all vaccines	To protect the child from catching VPD, fear of VPD
following the	 Anticipated regret if the child catches a VPD
recommended	 Because it is the "normal thing to do," vaccination as a social norm
schedule	 Pressure to vaccinate (from family, spouse, friends, etc.)
	Trust in health professionals' recommendation
	 Because the child is at particular risk of VPD (i.e., older siblings, will go to day care, etc.)
	 To protect others, to prevent the spread of VPD in the community
To refuse one or more vaccines and/or to delay vaccination	 As a "trade-off" position between refusing all and accepting all vaccines
	Disease perceived as mild (mostly for rotavirus vaccine)
	 Fear of adverse events (to refuse some vaccines)/fear of diseases (to accept some vaccines)
	 Because it is a new vaccine (mostly for rotavirus vaccine)
	 Feeling of guilt/pressure to vaccinate (to accept some—all vaccines with a delayed schedule or not)
	 Bad experience with vaccination for the child/for others in the social network
	 Fear of multiple injections at the same visit
	Advice/information on "alternative vaccination schedule"
To refuse all vaccines	Perception that vaccines are unsafe and ineffective
	Preference for natural immunity
	 Perception that risk associated with vaccination is higher than risk of VPD
	Preference for other modes of protection (e.g., homeopathic vaccines)
	에서 이 방법을 알려요. 이 이 이 수 있는 것은 이 이 이 방법을 알려요. 이 이 있는 것은 이 이 이 방법을 위해 있는 것은 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이

Table 2. Main Factors Influencing Mothers' Decision About Vaccination.

Maternity care provider barriers

- Lack of knowledge
- Misconceptions about disease risk
- Concerns about vaccine safety & efficacy
- Need for vaccination during pregnancy
- Lack of studies done in pregnant women
- Patient refusal
- Lack of time
- Concern about liability & blame
- Ambiguous guidelines
- Uncertainty about who bears responsibility
- Inability to track vaccination status
- Vaccination not part of typical practice

UMAN VACCINES & IMMUNOTHERAPEUTICS 016, VOL. 12, NO. 4, 857–865 ttp://dx.doi.org/10.1080/21645515.2015.1101524

REVIEW

Improving rates of maternal immunization: Challenges and opportunities

Donna M. MacDougall^{a,b} and Scott A. Halperin^a

Maternity care provider facilitators

- Positive attitude toward vaccination
- Concern about seriousness of influenza
- Belief in safety and efficacy of vaccines
- Older providers
- Vaccinated providers
- Multispecialty groups
- Engaged with influenza program
- Existence of national recommendations

UMAN VACCINES & IMMUNOTHERAPEUTICS 016, VOL. 12, NO. 4, 857–865 ttp://dx.doi.org/10.1080/21645515.2015.1101524

REVIEW

Improving rates of maternal immunization: Challenges and opportunities

Donna M. MacDougall^{a,b} and Scott A. Halperin^a

Moving forward – likely a mixed model

- Enhanced communication strategy
- Understanding factors contributing to hesitancy
- Timely updates to maternity care providers
- Immunization needs to be integrated into standard maternity care
- Formal maternal immunization strategy
 - Evidence-based guidelines
- Support for maternity care providers
 - Education and training
 - Immunization competency
- Avoiding missed opportunities

Highest research priorities in Canada

- Relating to pertussis immunization in pregnancy
- Maternity care providers
 - Behaviour and intentions around Tdap recommendations
 - Opinions on how to optimize Tdap acceptance
 - Opinions on how to best integrate immunization into routine prenatal care
- Front line immunization providers
 - Behaviour <u>and</u> intentions around Tdap recommendations
 - Behaviour and intentions around Tdap delivery
 - Opinions on how to best integrate immunization into routine prenatal care

How does this lead to implementation challenges?

· ~

Criteria

Disease characteristics and burden

Vaccine characteristics

Immunization strategies

Social and economic costs and benefits

Feasibility and acceptability

Ability to evaluate

Research questions

Other considerations including equity, politics and legal issues

Overall, this program should be publicly-funded

Available online at www.sciencedirect.com

laccine

Vaccine 23 (2005) 2470-2476

www.elsevier.com/locate/vaccine

An analytical framework for immunization programs in Canada

L.J. Erickson^{a,b,*}, P. De Wals^{c,d}, L. Farand^a

^a Département d'administration de la santé, Université de Montréal, Montréal, Canada ^b Agence d'évaluation des technologies et des modes d'intervention en santé du Québec (AETMIS), 2021 Avenue Union, Bureau 1040, Montreal, Que, Canada H3A 2S9 ^c Département de médecine sociale et préventive, Université Laval, Canada ^d Institut national de santé publique du Québec, Canada

Received 29 July 2004; received in revised form 12 September 2004; accepted 24 October 2004 Available online 24 November 2004

Avoiding the Dutch situation

Whooping cough vaccination in pregnancy

22 januari 2018 **2018**

```
Op deze pagina
```

> Where can you be vaccinated?

"The Dutch National Institute for Public Health is currently investigating how to arrange this vaccination for pregnant women."

"Women can be vaccinated by their family doctor...not all practices offer the vaccination...or go to the Public Health Service"

The PIPER Group

WEDNESDAY, DECEMBER 5

14:00 - 15:30 CONCURRENT SESSIONS

SUCCESSFUL IMPLEMENTATION OF MATERNAL VACCINATION PROGRAMS: HOW TO GET THERE?

> hildren lospital

Progressing Immunization in Pregnancy Evaluation in Research

ROOM 210

5th International Neonatal & Maternal Immunization Symposium (INMIS 2019) September 15-17, 2019 in Vancouver, Canada www.inmis.org

Hear up-to-date information in maternal and neonatal immunization from vaccinology research laboratory science and clinical trials through to implementation and social science of immunization programs.

Thank you

http://vaccineevaluationcenter.ca/, https://bcchr.ca/

Twitter: @manishs_ @VEC_ubc

THE UNIVERSITY OF BRITISH COLUMBIA

Faculty of Medicine

